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Abstract
How can we relate the constraint structure and constraint dynamics of the
general gauge theory in the Hamiltonian formulation to specific features
of the theory in the Lagrangian formulation, especially relate the constraint
structure to the gauge transformation structure of the Lagrangian action? How
can we construct the general expression for the gauge charge if the constraint
structure in the Hamiltonian formulation is known? Whether we can identify
the physical functions defined as commuting with first-class constraints in the
Hamiltonian formulation and the physical functions defined as gauge invariant
functions in the Lagrangian formulation? The aim of the present paper is to
consider the general quadratic gauge theory and to answer the above questions
for such a theory in terms of strict assertions. To fulfil such a programme, we
demonstrate the existence of the so-called superspecial phase-space variables in
terms of which the quadratic Hamiltonian action takes a simple canonical form.
On the basis of such a representation, we analyse a functional arbitrariness in
the solutions of the equations of motion of the quadratic gauge theory and
derive the general structure of symmetries by analysing a symmetry equation.
We then use these results to identify the two definitions of physical functions
and thus prove the Dirac conjecture.

PACS numbers: 11.15.−q, 11.10.Ef, 11.30.−j

1. Introduction

Most contemporary particle-physics theories are formulated as gauge theories. It is well
known that within the Hamiltonian formulation, gauge theories are theories with constraints (in
particular, with first-class constraints (FCC)). This is the main reason for a long intensive study
of formal theory of constrained systems. The theory of constrained systems began with pioneer
works by Bergmann and Dirac [1, 2] and was then developed and presented in some review
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books [3–7], it still attracts a lot of attention from researchers. The first steps of the theory
in formulating dynamics of constrained systems in the phase space, elaborating the procedure
of finding all the constraints (the Dirac procedure), and reorganizing the constraints to the
FCC and second-class constraints (SCC) were relatively simple. From the very beginning, it
became clear that the presence of FCC among the complete set of constraints in the Hamiltonian
formulation is a direct indication that the theory is a gauge one, i.e., its Lagrangian action is
invariant under gauge transformations that in the general case are continuous transformations
parametrized by arbitrary functions of time (of space–time coordinates in the case of field
theory). It was demonstrated that the number of independent gauge parameters is equal to
the number µ1 of primary FCC, and the total number of unphysical variables is equal to
the number µ of all FCC, in spite of the fact that the equations of motion contain only µ1

arbitrary functions of time (undetermined Lagrange multipliers = the primary FCC), see [6]
and references therein. At the same time, we proved that for a class of theories for which
the constraint structure of the whole theory and its quadratic approximation is the same and
for which the constraint structure does not change from point to point in the phase-space
(we call such theories perturbative ones), physical functions in the Hamiltonian formulation
have to commute with FCC. In a sense, this statement can be identified with the so-called
Dirac conjecture. All known, until now, models where the Dirac conjecture does not hold are
nonperturbative in the above sense. After this preliminary progress in the theory of constrained
systems, it became clear that a natural and very important continuation of the study is to try to
relate the constraint structure and constraint dynamics of a gauge theory in the Hamiltonian
formulation to specific features of the theory in the Lagrangian formulation, especially to relate
the constraint structure to the gauge transformation structure of the Lagrangian action. One
of the key problems here is the following: how to construct a general expression for the gauge
charge if the constraint structure in the Hamiltonian formulation is known? Another principal
question, closely related to the latter one, is: whether we can identify the physical functions
defined as commuting with FCC in the Hamiltonian formulation and the physical functions
defined as gauge invariant functions in the Lagrangian formulation? Many efforts have been
made to attempt to answer these questions (see, e.g., [8]). All previous considerations contain
some restrictive assumptions about the theory structure (in particular, about the constraint
structure), such that strictly proved answers to all the above questions are still unknown for a
general gauge theory (even belonging to the above-mentioned perturbative class).

The aim of the present work is to consider a general quadratic gauge theory and to
answer the above questions for such a theory in terms of strict assertions. The motivation is
that for the majority of perturbative gauge theories, their behaviour is in essence determined
by the quadratic part of the action, and the nonquadratic part is ‘small’, in a sense. The
constraint and gauge structure of the complete theory and its quadratic approximation is the
same. Constraints of the complete theory differ from linear constraints of the quadratic theory
by ‘small’ nonlinear terms, such that the number of first-class and second-class constraints
remains unchanged. The gauge transformations of the complete theory and of its quadratic
approximation have the same number of gauge parameters. The majority of the properties
of the complete gauge theory and of its quadratic approximation are the same. However, as
was already mentioned above, the consideration of a general gauge theory is sometimes a
formidable task. At the same time, the simplifications due to the quadratic approximation
allow us to present strict derivations and illustrations of relations between the Hamiltonian and
Lagrangian structures of gauge theories. In particular, we establish the relation between the
constraint structure of the theory and the structure of its gauge transformations, represent the
gauge charge as a decomposition in constraints, prove the Dirac conjecture and identify
the physical functions in Hamiltonian and Lagrangian formulations. To fulfil such a
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programme, we demonstrate the existence of the so-called superspecial phase-space variables
(section 2 and the appendix), in terms of which the quadratic Hamiltonian action takes a simple
canonical form. On the basis of such a representation, we analyse a functional arbitrariness
in the solutions to the equations of motion of the quadratic gauge theory (section 3), and
derive a general structure of symmetries by analysing a symmetry equation (section 4). In
section 5, we use these results to identify the two definitions of physical functions and thus
prove the Dirac conjecture.

2. Superspecial phase-space variables

First, we recall (see [6]) that there exists a canonical transformation from the initial phase-
space variables η = (q, p) to the special phase-space variables ϑ = (ω,Q,�) with the
following properties: the constraint surface is described by the equations � = 0. The
variables � are divided into two groups: � = (P, U), where U are all the SCC and P are
all the FCC. At the same time, P are the momenta conjugate to the coordinates Q. Moreover,
the special variables can be chosen such that � = (�(1), �(2...)), where �(1) are primary and
�(2...) are secondary constraints. Respectively, �(1) = (P(1), U(1)), �(2...) = (P(2...), U(2...));
P =(P(1),P(2...)), U = (U(1), U(2...)); P(1) are primary FCC, P(2...) are secondary FCC, U(1)

are primary SCC, U(2) are secondary SCC. The Hamiltonian action SH of a general quadratic
gauge theory has the structure

SH[ϑ] = Sph[ω] + Snon-ph[ϑ], ϑ = (ϑ, λ),

Sph[ω] =
∫

[ωpω̇q − Hph(ω)]dt,

Snon-ph[ϑ] =
∫ [

PQ̇ + UpU̇q − H
(1)
non-ph(ϑ)

]
dt,

(1)

where

H
(1)
non-ph = (Q(1)A + Q(2...)B + ωC)P(2...) + P(2...)DP(2...)

+P(2...)EU(2...) + U(2...)GU(2...) + λPP(1) + λUU(1), (2)

and A,B,C,E and G are some matrices (in the general case depending on time). We note
that the special variables (ω,Q,�) may be chosen in more than one way. The equations of
motion are

δSH

δϑ
= 0 �⇒

{
ϑ̇ = {ϑ,H(1)}
� = 0,

where

H(1) = Hph + Hnon-ph

is the total Hamiltonian. In what follows, we call δSH
δϑ

and O
(

δSH
δϑ

)
the extremals.

One can demonstrate (see the appendix) that the special phase-space variables can be
chosen such that the non-physical part of the total Hamiltonian (2) takes a simple (canonical)
form,

H
(1)
non-ph = H

(1)
FCC + H

(1)
SCC, (3)

where

H
(1)
FCC =

ℵχ∑
a=1

(
a−1∑
i=1

Q(i|a)P(i+1|a) + λa
PP(1|a)

)
,

H
(1)
SCC = U(2...)FU(2...) + λUU(1).
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Here (Q,P) = (Q(i|a),P(i|a)), λP = (λa
P
)
, a = 1, . . . ,ℵχ , i = 1, . . . , aF is a matrix, and

ℵχ is the number of the stages of the Dirac procedure that is necessary to determine all the
independent FCC. In what follows, we call such special phase-space variables the superspecial
phase-space variables. In terms of the superspecial phase-space variables, the consistency
conditions for the primary FCC P(1|a), a > 1, determine the secondary FCC P(2|ℵχ ), and
so on, creating the following a-chain of FCC, P(1|a) → P(2|a) → P(3|a) · · ·P(a|a), see the
following scheme:

P(1|ℵχ ) → P(2|ℵχ ) → · · · → P(ℵχ −1|ℵχ ) → P(ℵχ |ℵχ )

P(1|ℵχ −1) → P(2|ℵχ −1) → · · · → P(ℵχ −1|ℵχ −1)

...
...

...
...

...

P(1|2) → P(2|2)

P(1|1).

The consistency conditions for the constraints P(a|a), a = 1, . . . ,ℵχ do not yield any new
constraints. We note that in the canonical form the non-physical part of the total Hamiltonian
is independent of the coordinates Q(a|a).

3. Functional arbitrariness in solutions of equations of motion

In theories with FCC, the equations of motion do not determine a unique trajectory for given
initial data. In what follows, we study this problem for the quadratic gauge theories using the
superspecial phase-space variables. The equations of motion that follow from actions (1) and
(2), with taking (3) into account, are

ω̇ = {ω,Hph}, � = 0, (4)

and

Q̇(i|a) = {Q(i|a), Hnon-ph} �⇒




Q̇(1|a) = λa
P ,

Q̇(2|a) = Q(1|a),

· · ·
Q̇(a|a) = Q(a−1|a).

(5)

We see that equations (4) for the physical variables ω and for � have a unique solution
whenever initial data for these variables are given. There exists a functional arbitrariness in
solutions to the equations of motion (5) for the variables Q, because these equations contain
arbitrary functions of time λP(t). We note that the number of variables Q is equal to the
number of all FCC and, in general, this number is larger than the number of the arbitrary
functions λP(t). However, as will be seen below, because of the specific structure of the
equations, the ‘influence’ of these arbitrary functions on solutions for Q is very strong. This
fact is extremely important for the physical interpretation of the variables Q and for the
general physical interpretation of theories with FCC. The following proposition describes to
what extent the variables Q are affected by the arbitrary functions λP(t).
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The equations of motion (5) for the variables Q are completely controllable3 by the
functions λP(t). In the case under consideration, this means that under a proper choice of the
functions λa

P(t), equations (5) have a solution with the properties

Q(i|a)|t=0 = 0, Q(i|a)|t=τ = 	(i|a), i = 1, . . . , a,

dsλa
P

ds t

∣∣∣∣
t=0

= 0,
dsλa

P
ds t

∣∣∣∣
t=δ

= δa
(s), s = 0, 1, . . . , K,

(6)

where τ,	(i|a),	(i|a), δa
(s) and the integer K are arbitrary.

Because of the simple structure of the equations of motion in superspecial phase-space
variables, the proof of the above assertion can be done in a constructive manner. Namely, we
explicitly present such a solution. It has the form

Q(i|a) = da−iXa

dta−i
, i = 1, . . . , a,

if we choose

λa
P = daXa

dta
,

where Xa(t) are arbitrary smooth functions obeying the following boundary conditions:

dsXa

dt s

∣∣∣∣
t=0

= 0, s = 0, . . . , K + a,

dsXa

dt s

∣∣∣∣
t=τ

=




Q(a−s|a)|t=τ = 	(a−s|a), s = 0, . . . , a − 1,

ds−aλa
P

dt s−a

∣∣∣∣
t=τ

= δa
(s−a), s = a, . . . , K + a.

For example, the functions Xa(t) can be chosen as

Xa(t) = f (t)

[
a−1∑
s=0

1

s!
	(a−s|a)(t − δ)s +

K+a∑
s=a

1

s!
δa
(s−a+1)(t − δ)s

]

where f (t) is an arbitrary smooth function that is respectively equal to zero and to one in the
neighbourhoods of the points t = 0 and t = τ . An example of such a function is4

f (t) =




0, t � ε,

1

1 + eu
, u = 1

t − ε
+

1

t − (τ − ε)
, ε � t � τ − ε,

1, t � τ − ε,

lim
t→ε+0

f [s](t) = 0, lim
t→τ−ε−0

f [s](t) = δ0,s , s � 0.

(7)

The proved proposition is crucial for the understanding of the structure of theories with
FCC (gauge theories) and for their physical interpretation. The most remarkable fact is the
following: the functional arbitrariness in equations of motion of theories with FCC (gauge
theories) is due to the undetermined Lagrange multipliers to the primary FCC. However, this
arbitrariness affects essentially more variables. In the special variables, all the variables Q are
controllable by the undetermined Lagrange multipliers. The number of Q-variables is equal
to the number of all the FCC and is greater than the number of the Lagrange multipliers.

3 For an exact definition of the controllability see, e.g., the book [9].
4 Here and in what follows, we use the notation

f [s] = dsf

dt s
.
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4. Symmetries

We recall that a transformation q(t) → q ′(t) is called a symmetry of an action S if

L(q, q̇) → L′(q, q̇) = L(q, q̇) +
dF

dt
, (8)

where F is a local function. In what follows, only infinitesimal symmetry transformations
q → q + δq with local functions δq are considered. These symmetry transformations can
be global, gauge and trivial ones. Gauge transformations are parametrized by some arbitrary
functions of time, gauge parameters (in the case of a field theory the gauge parameters
depend on all space–time variables). Any infinitesimal symmetry transformation implies a
conservation low (Nöether theorem):

dG

dt
= −δqa δS

δqa
�⇒ G = const on extremals,

G = P − F, P = ∂L

∂q̇a
δqa, δL = dF

dt
.

(9)

The local function G is referred to as the conserved charge related to the symmetry δq of the
action S. The quantities δq, S and G are related by equation (9). In what follows, we call this
equation the symmetry equation. The symmetry equation for the Hamiltonian action SH[ϑ]
has the form

δϑ
δSH

δϑ
+

dG

dt
= 0. (10)

4.1. Trivial symmetries

For any action, there are trivial symmetry transformations,

δtrq
a = Û ab δS

δqb
, (11)

where Û is an antisymmetric local operator, that is (ÛT )ab = −Û ab. The trivial symmetry
transformations do not affect genuine trajectories. Using the simple action structure in
superspecial phase-space variables, we can prove the following assertion: for theories with
FCC, symmetries of the Hamiltonian action that vanish on the extremals are trivial symmetries.

To prove this assertion we consider the Hamiltonian action SH[ϑ], ϑ = (ϑ, λ) (see
equation (1), and equation (A.12) from the appendix) of a theory with FCC in the superspecial
phase-space variables ϑ . We can see that the equations of motion

δSH

δU
= 0,

δSH

δQ
= 0,

δSH

δP
= 0,

where Q = (λa
P ,Q(i|a), i = 1, . . . , a − 1, a = 1, . . . ,ℵχ ), have solutions of the form

U = P = 0 and Q = ψ(Q(i|i)), where ψ are local functions of the indicated arguments.
Therefore, the variables U,P and Q are auxiliary ones5. Excluding these variables from the
action SH, we obtain a dynamically equivalent action S̄H[ω,Q(i|i)]. Taking into account that
U = P = 0 �⇒ � = 0, and the relation SH|�=0 = Sph[ω], we find

S̄H[ω,Q(i|i)] = SH|U=P=0,Q=ψ = Sph[ω].

5 Suppose an action S[q, y] contains two groups of coordinates q and y such that the coordinates y can be expressed
as local functions y = ȳ(q[l], l < ∞) of q and their time derivatives by the help of the equations δS/δy = 0. We
call y the auxiliary coordinates. The action S[q, y] and the reduced action S[q] = S[q, ȳ] lead to the same equations
for the coordinates q, see [11, 12]. The actions S[q, y] and S[q] are called dynamically equivalent actions. One can
prove that there exists a one-to-one correspondence (isomorphism) between the symmetry classes of the extended
action. Symmetries are equivalent if they differ by a trivial transformation.
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Let a transformation δϑ which vanishes on the extremals be a symmetry of the action SH.
Consider the reduced transformation δ̄ω, δ̄Q(i|i),

(δ̄ω, δ̄Q(i|i)) = δϑ|U=P=0,Q=ψ.

It is evident that the reduced transformation vanishes on the extremals of the reduced action
S̄H and is a symmetry transformation of the action S̄H. This implies that

δ̄ω = m̂
δSph

δω
, δ̄Q(i|i) =

(
n̂
δSph

δω

)(i|i)
,

where m̂ and n̂ are some local operators. The transformation δ̄ω is obviously the symmetry
transformation of the nonsingular action Sph, and in addition, this symmetry transformation
vanishes on the extremals. We can prove that such a symmetry is always a trivial one and,
therefore, m̂ is antisymmetric. Therefore, the complete transformation δ̄ω, δ̄Q(i|i) can be
represented as (

δ̄ω

δ̄Q(|)

)
= M̂

(
δS̄H
δω

δS̄H
δQ(|)

)
, M̂ =

(
m̂ −n̂T

n̂ 0

)
.

The matrix M̂ is evidently antisymmetric. Finally, the transformation δ̄ω, δ̄Q(i|i) is a trivial
symmetry of the action S̄H. This implies that the extended transformation δϑ is a trivial
symmetry of the action SH.

4.2. Gauge symmetries

We are now going to prove the following assertion: in theories with FCC, there exist nontrivial
symmetries δϑ of the Hamiltonian action SH that are gauge transformations. These symmetries
are parametrized by the gauge parameters ν. These parameters are arbitrary functions of
time t. Moreover, they can be arbitrary local functions of ϑ = (ϑ, λ).

The corresponding conserved charge (the gauge charge) is a local function6 G =
G(P, ν[]), which vanishes on the extremals. The gauge charge has the following decomposition
with respect to the FCC:

G =
ℵχ∑
i=1

ν(a)P(a|a) +
ℵχ −1∑
i=1

ℵχ∑
a=i+1

Ci|aP(i|a). (12)

Here Ci|a(ν[]) are some local functions, which can be determined from the symmetry equation
in an algebraic way, and ν = (ν(a)), ν(a) = (νµa

(a)

)
, a = 1, . . . ,ℵχ . Here ν(a) are gauge

parameters related to the FCC in a chain whose number is a. The number of gauge parameters
ν(a) is equal to the number of primary FCC in the chain a. The index µa labels constraints
(and gauge parameters) inside the chain.

The total number of gauge parameters is equal to the number of primary FCC. The
total number of independent gauge parameters together with their time derivatives that enter
essentially in the gauge charge is equal to the number of all the FCC.

The gauge charge is the generating function for the variations δϑ of the phase-space
variables,

δϑ = {ϑ,G}. (13)

The variations δλU are vanishing, and δλa
P = ν

[a]
(a).

6 A local function depends on some variables xa[l], a = 1, . . . , n, l = 0, 1, . . . , N up to some finite order N. We use
the following notation for the local functions:

F(xa, xa[1], xa[2], . . .) = F(x[]).



5588 D M Gitman and I V Tyutin

To prove the above assertion, we consider the symmetry equation (9) for the case under
consideration. Taking the action structure (1), (3), the anticipated form of the gauge charge
(12), and of the variations δϑ , into account, we can rewrite this equation as follows:

ĤG −
ℵχ∑
a=1

λa
P{P(1|a|), G} = U(1)δλU +

ℵχ∑
a=1

δλa
PP(1|a), (14)

where

ĤG = {G,H } +

(
∂

∂t
+ ν[m+1] ∂

∂ν[m]

)
G,

H = Hph(ω) +
ℵχ∑
a=1

a−1∑
i=1

Q(i|a)P(i+1|a) + U(2...)FU(2...).

(15)

The following commutation relations:

{P(i|a), H } = −P(i+1|a), i = 1, . . . ,ℵχ − 1, a = i + 1, . . . ,ℵχ ,

{P(i|i), H } = 0, i = 1, . . . ,ℵχ , {P,�} = 0.

hold. Equation (14) implies the following equations for the functions Ci|a and for the variations
δλ:
ℵχ−1∑
i=1

ℵχ∑
a=i+1

[
−P(i+1|a) + P(i|a)

(
∂

∂t
+ ν[m+1] ∂

∂ν[m]

)]
Ci|a

+
ℵχ∑
a=1

P(a|a)ν̇(a) = U(1)δλU +
ℵχ∑
a=1

P(1|a)δλa
P . (16)

Considering equation (16) on the constraint surface P(i|a) = 0, i = 1, . . . ,ℵχ − 1, a =
i, . . . ,ℵχ , U(1) = 0, we can choose Cℵχ −1|ℵχ

= ν̇(ℵχ ). Substituting this Cℵχ−1|ℵχ
into

equation (16), we obtain that
ℵχ−2∑
i=1

ℵχ∑
a=i+1

[
−P(i+1|a) + P(i|a)

(
∂

∂t
+ ν[m+1] ∂

∂ν[m]

)]
Ci|a

+P(ℵχ −1|ℵχ )ν
[2]
ℵχ

+
ℵχ −1∑
a=1

P(a|a)ν̇(a) = U(1)δλU +
ℵχ∑
a=1

P(1|a)δλa
P . (17)

Considering equation (17) on the constraint surface P(i|a) = 0, i = 1, . . . ,ℵχ − 2, a =
i, . . . ,ℵχ , U(1) = 0, we choose Cℵχ−2|ℵχ −1 = ν̇(ℵχ −1), Cℵχ −2|ℵχ

= ν̈(ℵχ ). We see that we can
similarly determine all the Ci|a such that

Ci|a = ν
[a−i]
(a) , i = 1, . . . ,ℵχ − 1, a = i + 1, . . . ,ℵχ . (18)

Therefore, in the case under consideration, the gauge charge has the following form:

G =
ℵχ∑
i=1

ℵχ∑
a=i

ν
[a−i]
(a) P(i|a). (19)

The form of the variations δϑ follows from (13),

δQ(i|a) = ν
[a−i]
(a) , δω = δ� = 0. (20)

After all the Ci|a are known, the variations δλ can be determined from equation (16),

δλU = 0, δλa
P = ν

[a]
(a), (21)

which proves the assertion.
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5. Structure of arbitrary symmetry

Analysing the symmetry equation, we are going to prove that: any symmetry δϑ and G of the
action SH can be presented as the sum of three types of symmetries(

δϑ

G

)
=
(

δcϑ

Gc

)
+

(
δgϑ

Gg

)
+

(
δtrϑ

Gtr

)
, (22)

such that:

• The set δcϑ and Gc is a global symmetry, canonical for the phase-space variables ϑ . All
the variations δcϑ and the corresponding conserved charge Gc are either identically zero
or do not vanish on the extremals.

• The set δgϑ and Gg is a particular gauge transformation given by equations (19), (20)
and (21) with specific fixed gauge parameters (i.e., specific fixed forms of the functions
ν = ν̄(t, η[], λ[])) that are either identically zero or do not vanish on the extremals. In the
latter case, the corresponding conserved charge Gg vanishes on the extremals, whereas
the variations δgϑ do not.

• The set δtrϑ and Gtr is a trivial symmetry. All the variations δtrϑ and the corresponding
conserved charge Gtr vanish on the extremals. The charge Gtr depends on the extremals
quadratically.

In what follows, we present a constructive way for finding the components of
decomposition (22).

5.1. Constructing the global canonical part of a symmetry

In what follows, we use the local functions I,

I = (�, J ) = O

(
δSH

δϑ

)
, J = (I, λU ), I = ϑ̇ − {ϑ,H } − {ϑ,P(1)}λP ,

for the complete set of extremals. One can easily verify that the set I is equivalent to the
complete set of the extremals δSH/δϑ. Assuming that δϑ and G is a symmetry, and taking the
structure of the total Hamiltonian in the case under consideration into account, we can write
the symmetry equation (10) as

δϑE−1I − U(1)δλU − λUδU(1) − P(1)δλP +
dG

dt
= 0. (23)

We denote via δJ ϑ,G′
J the corresponding zero-order terms in the decomposition of the

quantities δϑ,G with respect to the extremals J . We have(
δϑ

G

)
=
(

δJ ϑ
(
η, λ

[]
P
)

+ O(J )

G′
J

(
η, λ

[]
P
)

+ Bm

(
ω, λ

[]
P
)
J [m] + O(J 2)

)
. (24)

We then rewrite equation (23) retaining only the terms of zero and first order with respect to
the extremals J . We obtain

δJ ϑE−1I − P(1)δλP = −ĤG′
J + {P(1), G′

J }λP + λU {U(1), G′
J }

+ {ϑ,G′
J }E−1I − J [m]ĤBm + λP{P(1), Bm}J [m] − BmJ [m+1] + O(�I). (25)

Here, the contributions from the terms U(1)δλU and δλUU(1) are accumulated in the term
O(�I), and the operator Ĥ is defined by

ĤF = {F,H } +

(
∂

∂t
+ λ[m+1] ∂

∂λ[m]

)
F. (26)
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Analysing terms with the extremals J [m] (beginning with the highest derivative) in
equation (25), we can see that all Bm = 0. Considering then terms proportional to I in
equation (25), we obtain the expression

δJ ϑ = {ϑ,G′
J } + O(�)

for the variation δJ ϑ . Then taking into account that symmetry variations of extremals are
proportional to extremals, we derive the following relations:

δ� = O(I) �⇒ δJ � = O(�) = {�,G′
J } + O(�).

Thus, we have

{�,G′
J } = O(�). (27)

We can verify that {P,G′
J } is a first-class function, which means that

{P,G′
J } = O(P) + O(�2). (28)

Considering the remaining terms in equation (25), we obtain the equation

P(1)δJ λP = ĤG′
J + λP{P(1), G′

J } + O(�2), (29)

which relates δJ λP and G′
J .

Equation (29) allows the function G′
J to be studied in more detail. For this, we rewrite

this equation (taking (26) and (28) into account) as

{G′
J ,H } +

(
∂

∂t
+ λ

[m+1]
P

∂

∂λ
[m]
P

)
G′

J = O(P) + O(�2).

Analysing the terms which contain Lagrange multipliers λ[m]
χ (beginning with the highest

derivative) in this equation, we can see that these multipliers can enter only the terms that
vanish on the constraint surface. For example, considering terms with the highest derivative
λ

[M+1]
P in the latter equation, we get

∂G′
J

∂λ
[M]
P

= O(P) + O(�2) �⇒ G′
J = G′

J (λP , . . . , λ
[M−1]
P ) + O(P) + O(�2).

In the same manner we finally obtain: G′
J = GJ (ϑ) + O(P) + O(�2). With equations (27)

and (28) taken into account, this implies

{U,GJ } = O(�), {P,GJ } = O(P) + O(�2).

Therefore, the above consideration allows a refined version of representation (24)


δϑ

δλU

δλP
G


 =




{ϑ,GJ + BPP} + O(I)

O(I)

δJ λP
(
ϑ, λ

[]
P
)

+ O(J )

GJ + BPP + O(I 2)


 , (30)

where BP = BP
(
ϑ, λ

[]
P
)
, and the function GJ (ϑ) obeys the relations

{GJ ,U} = O(�), {GJ ,P} = O(P) + O(�2), {GJ ,H } = O(P) + O(�2). (31)

We select from the function GJ a part GI that does not vanish on the constraint surface,

GJ (ϑ) = g(ω) + g1(ω,Q)Q + O(�). (32)

Because of relation (31), the function g1(ω,Q) in (32) is zero, and, moreover, O(�) =
O(P) + O(�2). We define GI(ϑ) as

GI(ϑ) = g(ω). (33)
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We then have

GJ (ϑ) = GI(ϑ) + G1(ϑ), G1(ϑ) = O(P) + O(�2).

Therefore, in virtue of (31),

G = GI(ϑ) + O(P) + O(I 2), ĤGI = 0, {U,GI } = {P,GI } = 0. (34)

We now define the variations δIϑ as

δIϑ = {ϑ,GI } �⇒ δIω = {ω,GI }, δIQ = δIP = δIU = 0, δI λU = δIλP = 0.

(35)

The set δIϑ,GI is an exact symmetry of the action SH. In what follows, this symmetry is
denoted by

δIϑ = δcϑ = {ϑ,Gc}, δI λ = δcλ = 0, GI = Gc = g(ω).

5.2. Constructing the gauge and the trivial parts of a symmetry

At this step we represent a symmetry δϑ,G as

δϑ = δcϑ + δrϑ, G = Gc + Gr. (36)

Because δcϑ,Gc is a symmetry, it is obvious that δrϑ,Gr is also a symmetry. Using
equations (31), we can verify that the following relations,

Gr =
ℵP∑
i=1

ℵP∑
a=i

Ki|a
(
ω,Q, λ

[]
P
)
P(i|a) + O(I 2),

δrη =
ℵP∑
i=1

ℵP∑
a=i

{η,P(i|a)}Ki|a
(
ω,Q, λ

[]
P
)

+ O(I),

(37)

where K are some local functions, hold.
In turn, we represent the symmetry δrϑ,Gr in the following form,

δrϑ = δν̄ϑ + δtrϑ, Gr = Gν̄ + Gtr, (38)

where the set δν̄ϑ,Gν̄ is the gauge transformation given by equations (12) and (13) with
specific fixed values of the gauge parameters,

νi = ν̄i (t, η, λ[]) = Ki|i
(
ω,Q, λ

[]
P
)
, (39)

that are either identically zero or do not vanish on the constraint surface. This implies that

Gν̄ = O(P) + O(I 2), δν̄ϑ = {ϑ,Gν̄}. (40)

We must emphasize that by construction, the functions Ki|i (and therefore the gauge
transformations) are identically zero whenever they vanish on the constraint surface.

It follows from equations (37) that δtrϑ,Gtr is a symmetry whose charge is of the form

Gtr = G′
tr + O(I 2), G′

tr =
ℵP−1∑
i=1

ℵP∑
a=i+1

Ki|a
(
ω,Q, λ

[]
P
)
P(i|a).

In what follows, we will see that δtrϑ,Gtr is a trivial symmetry. For the symmetry δtrϑ,Gtr

we write a decomposition of form (24),(
δϑtr

Gtr

)
=
(

δtrJ ϑ
(
ω,Q, λ

[]
P
)

+ O(J )

G′
trJ

(
ϑ, λ

[]
P
)

+ O(J 2),G′
trJ = G′

tr + O(�2)

)
, (41)
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taking into account that Bm = O(�). All the relations that hold for the quantities δJ ϑ,GJ

also hold for the quantities δtrJ ϑ,G′
trJ . In particular, the charge G′

tr obeys the equation

P(1)δ′
trλχ = ĤG′

tr + λP{P(1), G′
tr} + O(�2),

δ′
trλP = δtrλP |I=0 = δtrJ λP + O(�),

(42)

which is similar to equation (29). Equation (42) implies the following equation for the local
functions Ki|a, a = i + 1, . . . ,ℵP :

ℵP−1∑
i=1

ℵP∑
a=i+1

(P(i|a)ĤKi|a + Ki|aP(i+1|a)) = P(1)δ′
trλP + O(�2).

Considering this equation on the constraint surface �(...ℵP−1) = 0, we obtain that

KℵP−1|ℵPP(ℵP |ℵP ) = O(�2) �⇒ KℵP−1|ℵP = 0.

Substituting the expression for KℵP−1|ℵP into equation (42), and considering the resulting
equation on the constraint surface �(...ℵP−2) = 0, we obtain KℵP−2|ℵP = 0, and so on. We thus
see that all Ki|a = 0, a = i + 1, . . . ,ℵP , and therefore

Gtr = O(I 2). (43)

It then follows from equation (42)

P(1)δ′
trλP = O(�2) �⇒ δ′

trλP = O(�) �⇒ δtrλP = O(I).

By construction, the transformation δtrJ is similar to δJ . Therefore, relation (31) holds
true for this transformation and implies that

δtrJ ϑ = {ϑ,G′
tr} + O(�) = O(�), δtrJ λU = O(�).

Therefore,

δtrϑ = O(I). (44)

Relations (43) and (44) prove that the symmetry δtrϑ,Gtr is trivial.

6. Physical functions

In spite of the fact that there exists a functional arbitrariness in solutions to equations of motion
of a gauge theory, physics can be described by such theories. To ensure the independence of the
physical quantities from the arbitrariness inherent to solutions of a gauge theory, one imposes
limitations on the possible form of physical functions that describe the physical quantities.
First of all, we recall the general understanding that physics can be described in terms of gauge
theories [6]. Let the time evolution of a classical system be given by genuine trajectories κ(t)

in the configuration space. The latter are solutions to the equations of motion of the theory.
On the other hand, the state of the classical system at any given time instant t is characterized
by the set κ [](t) = (κ [l](t), l � 0), at this time instant, i.e., by a point in the jet space. The
trajectory in the configuration space creates a trajectory in the jet space. The latter trajectory
can be called the trajectory of system states. We call two trajectories in the configuration space
intersecting if the corresponding trajectories in the jet space intersect at a given time instant.
Using such a terminology and the results of section 3, we can say that intersecting trajectories
do exist in gauge theories. On the other hand, we believe that for classical systems, we can
introduce the notion of the system physical state at each time instant, such that there exists
a causal evolution of the physical states in time. Namely, once a physical state is given at
a certain time, at all other times the physical states are determined in a unique way. All the
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physical quantities are single-valued functions of the physical state at a given time instant.
The physical state is completely determined as soon as all possible physical quantities are
given in a certain time instant. Therefore, at first glance, there is a disagreement between the
causal evolution of the physical states and the absence of the causal evolution of trajectories
in the jet space for gauge theories. To eliminate this discrepancy and to be able to describe
classical systems consistently with the use of gauge theories, we can resort to the following
natural interpretation:

(a) physical states of a classical system and, therefore, all local physical quantities are
uniquely determined by points of genuine trajectories in the jet space;

(b) all the functions that are used to describe physical quantities must coincide at equal-time
points of intersecting genuine trajectories in the jet space.

Item (b) ensures independence of the physical quantities from the arbitrariness inherent to
solutions of a gauge theory and reconciles item (a) with the causal development of the physical
states in time. Item (b) imposes limitations on the possible form of these functions. The local
functions that obey item (b) are called physical functions. Suppose the local functions Aph(κ

[])

are physical. This implies that for two arbitrary genuine intersecting trajectories κ and κ ′ the
equality

Aph(κ
[]) = Aph(κ

′[]) (45)

holds at any time instant.
We consider local physical functions in the Hamiltonian formulation and in the special

phase-space variables ϑ. Taking the equations of motion (4), (5), and � = 0 into account, we
can conclude that any physical local functions of the form Aph(ϑ

[]) can be represented as

Aph(ϑ
[]) = aph

(
ω,Q, λ

[]
P
)

+ O

(
δS

δϑ

)
.

It is now easy to establish restrictions on the functions aph that follow from condition (45) of
physicality. For this, we recall that there exist two genuine trajectories ϑ and ϑ′ intersecting
at t = 0 such that at the time instant t they, having the same ω, differ only by the values of the
variables Q and λ

[l]
P . Namely,

ϑ(t) �⇒ (Q,λ
[]
P
)
, ϑ′(t) �⇒ (Q + δQ, λ

[]
P + δλ

[]
P
)
, (46)

where all the quantities Q,λ
[]
P , δQ and δλ

[]
P are arbitrary. The existence of such intersecting

trajectories follows from the consideration in section 3. Relation (45) for two such intersecting
trajectories implies the relation,

aph
(
ω(t),Q, λ

[]
P
) = aph

(
ω(t),Q + δQ, λ

[]
P + δλ

[]
P
)
, (47)

for the function aph. Because of the arbitrariness of the quantities Q,λ
[]
P , δQ and δλ

[]
P , we

obtain from equation (47) that
∂aph

∂Q
= ∂aph

∂λ[]
= 0 �⇒ aph = aph(ω). (48)

Therefore, physical local functions of the form Aph(ϑ
[]) can be represented as

Aph(ϑ
[]) = aph(ω) + O

(
δSH

δϑ

)
. (49)

In terms of the initial phase-space variables η = (η, λ), η = (q, p), any physical local
functions of the form Aph(η

[]) have the structure

Aph(η
[]) = aph(η) + O

(
δSH

δη

)
, {aph, χ} = O(�). (50)
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Indeed, taking into account that the set of constraints P is equivalent to all FCC χ(η) in the
initial phase-space variables, and that the set of constraints � is equivalent to all the initial
constraints �(η), one can justify the second condition (50). We are going to call conditions
(50) the physicality condition in the Hamiltonian sense. It is precisely in this sense one
has to understand the usual assertion that physical functions must commute with first-class
constraints on extremals. In fact, these conditions of physicality are those which are usually
called the Dirac conjecture.

On the other hand, it is known that physical functions must be gauge invariant on the
extremals (see, e.g., [6]). Let δνη be a gauge symmetry in the Hamiltonian formulation. Then,
the gauge variations of the LF Aph(η

[]) must be proportional to extremals,

δνAph(η
[]) = O

(
δSH

δη

)
. (51)

Such a condition we call the physicality condition in the Lagrangian sense. Until now it
was not clear whether two definitions (50) and (51) are equivalent. Below, we are going to
demonstrate the equivalence of these two conditions for the general quadratic gauge theory.

Let a local function Aph(η
[]) be physical in the Hamiltonian sense. Consider its gauge

variation δνAph. Such a variation has the following form (having (50) in mind):

δνAph = δaph(η) + O

(
δSH

δη

)
. (52)

Here we have used the fact that gauge variations of extremals are proportional to extremals.
Let us consider δaph taking into account (13) and (12). Then one easily sees that

δaph = {aph,G} = O({aph, χ}) + O

(
δSH

δη

)
.

Taking into account (50), we obtain that gauge variations of physical functions are proportional
to extremals, i.e., relation (51) holds.

Let now a local function Aph(η
[]) be physical in the Lagrangian sense, i.e., they obey

equation (51). One can always represent the function in the form

Aph = f
(
η, λ

[]
P
)

+ O

(
δSH

δη

)
.

Condition (51) implies

{f,G} +
mmax∑
m=0

∂f

∂λ
[m]
P

δλ
[m]
P = O

(
δSH

δη

)
. (53)

Let us consider the terms containing the highest time-derivatives of the gauge parameters in
the left-hand side of (53). Taking into account that δλa

P = ν[a]
a , see (21), and the fact that G

contains only the time derivatives ν[l]
a , l < a, such terms have the form

ℵχ∑
a

∂f

∂λ
a[mmax]
P

ν[a+mmax]
a .

These terms have to be proportional to the extremals, which implies

∂f

∂λ
a[mmax]
P

= O

(
δSH

δη

)
.

Similarly, we can verify that the function f does not contain any λ on the extremals, i.e.,

f
(
η, λ[]

χ

) = a(η) + O

(
δSH

δη

)
.
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Therefore,

Aph(η
[]) = a(η) + O

(
δSH

δη

)
. (54)

Considering equation (51) for function (54), we obtain that

{a,G} =
ℵχ∑
i=1

ℵχ∑
b=i

{a,P(i|b)}ν[b−i]
b = O

(
δSH

δη

)
,

which implies

{a,P(i|b)} = O

(
δSH

δη

)
= O(�) �⇒ {a, χ} = O(�) (55)

because all the ν
[b−i]
b are independent. This completes the proof of the equivalence of the two

definitions of physical functions. Equations (54) and (55) indicate that the function Aph(η
[])

is physical in the Hamiltonian sense.

7. Conclusion

We summarize below the main conclusions.
Any continuous symmetry transformation can be represented as a sum of three kinds of

symmetries, a global symmetry, a gauge symmetry and a trivial symmetry. If the global part
of a symmetry and the corresponding canonical charge are not identically zero, they do not
vanish on the extremals. The determination of the canonical charge from the corresponding
equation, and therefore the determination of the canonical part of a symmetry transformation,
is ambiguous. However, we must understand that the ambiguity in the canonical part
of a symmetry transformation is always a sum of a gauge transformation and a trivial
transformation. The gauge part of a symmetry does not vanish on the extremals, but the
gauge charge vanishes on the extremals. We emphasize that the gauge charge necessarily
contains a part that is linear in the FCC, and the remaining part of the gauge charge is
quadratic in the extremals. The trivial part of any symmetry vanishes on the extremals and the
corresponding charge is quadratic in the extremals.

The reductions of global symmetry transformations to the extremals are global canonical
symmetries of the physical action whose conserved charge is the reduction of the complete
conserved charge to the extremals. Any global symmetry of the physical action is a global
symmetry of the complete Hamiltonian action. The gauge transformations, taken on the
extremals, only transform the nonphysical variables Q and λP .

We can see that any gauge transformation can be represented in form (12) with an
accuracy of a trivial transformation. This follows from the structure of arbitrary symmetry
transformation presented above. Namely, as was demonstrated, any symmetry transformation
whose charge vanishes on the extremals is a sum of a particular gauge transformation and of
a trivial transformation. The gauge charge contains time derivatives of the gauge parameters
whenever there exist secondary FCC.

Another assertion holds. We can see that the numbers of nonphysical variables both in
Lagrangian and Hamiltonian formulations are respectively equal to the complete numbers of
gauge parameters and their time derivatives that enter in the gauge transformations in these
formulations. Indeed, in the Lagrangian formulation, the number of nonphysical coordinates
coincides with the number of FCC in the Hamiltonian formulation (with the number of
variables Q), and, therefore, coincides with the complete number of gauge parameters and
their time derivatives that enter the gauge transformations of the coordinates in the Lagrangian
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formulation. In the Hamiltonian formulation, the nonphysical variables are both Q and λχ .
At the same time, in this formulation, the gauge transformations of the Lagrange multipliers
λχ contain an additional time derivative in comparison with the gauge transformations of
the coordinates in the Lagrangian formulation. The number of λχ is equal to the number of
primary FCC and, therefore, is equal to the number of gauge parameters. A simple estimation
confirms the above assertion.

The equivalence of two definitions of physicality was proved. One of them states that
physical functions are gauge invariant on the extremals, and the other definition requires that
physical functions commute with FCC (the Dirac conjecture). As to the Dirac conjecture, we
have demonstrated that it follows from the fact established in section 3 that all the special
variables Q are controllable by the undetermined Lagrange multipliers.
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Appendix

In this appendix, we prove the existence of the super special phase-space variables described in
section 2. First we consider the term Q(1)AP(2...) in the Hamiltonian (2). Let the momenta P(1)

and the corresponding coordinates Q(1) be labelled by Greek subscripts, while the momenta
P(2...) and the corresponding coordinates Q(2...) are labelled by Latin subscripts,

Q = (Q(1)
ν ,Q

(2...)
b

)
, P = (P(1)

ν ,P(2...)
b

)
.

We assume that the defect of the rectangular matrix Aνb is equal to a (it is evident that7

[Q(1)] − a � [Q(2...)]). Then, there are a nontrivial null vectors z(α̃), α̃ = 1, . . . a, of the
matrix A such that zν

(α̃)A
νb = 0. We construct a quadratic matrix

Zν
α = ∥∥zν

(α̃)z
ν
(ᾱ)

∥∥, α = (α̃, ᾱ), [ᾱ] � [b],

where the vectors z(ᾱ) guarantee the nonsingularity of the complete matrix Z. Such vectors
always exist. We then perform the canonical transformation (Q(1),P(1)) → (Q′(1),P ′(1)),
where Q′(1)

ν Zν
α = Q(1)

α . Such a canonical transformation can be performed with a generating
function of the form

W = Q′(1)
ν Zν

αP(1)
α . (A.1)

We denote the notation

Q′(1)
α = (Q′(1)

α̃ = Q
(1|1)
α̃ ,Q

′(1)
ᾱ = Q̄

(1)
ᾱ

)
, P ′(1)

α = (P(1|1)
α̃ , P̄(1)

ᾱ

)
.

Therefore, the primary FCC now are P(1|1), P̄(1) and the corresponding conjugate coordinates
are Q(1|1), Q̄(1). After the canonical transformation the total Hamiltonian H(1) = Hph +Hnon-ph

becomes

H(1) = Hph + Q̄(1)A′P(2...) + (Q(2...)B + ωC)P(2...) + P(2...)DP(2...)

+P(2...)EU(2...) + U(2...)FU(2...) + λ1P(1|1) + λ̄P̄(1) + λUU(1), (A.2)

7 The following notation is used: suppose Fa(η), a = 1, . . . , n are some functions, then [F ] is the number of these
functions, [F ] = n. Note that the brackets [] are also used to denote time-derivatives (q[l] = (dt )

lq) and arguments
of action functionals (e.g. S[q]).
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where

A′ = (A′)ν̄b = Zν̄
αAαb, rank A′ = max = [Q̄(1)], b = (µ̄, b̄), det(A′)ν̄µ̄ �= 0,

and λ1P(1|1) + λ̄P̄(1) denotes the terms proportional to the primary FCC. At the same time,
the functions λ1 and λ̄ absorb the time derivative of the generating function (A.1). We note
that the coordinates Q(1|1) do not enter the Hamiltonian H(1) (in fact, that was one of the
aims of the above canonical transformation) and therefore, the consistency conditions for the
constraints P(1|1) do not yield any new constraints,

{P(1|1), H (1)} ≡ 0.

We consider the consistency conditions for the primary FCC P̄(1),

{P̄(1), H (1)} = −A′P(2...) = 0.

Because the rank of the matrix A′ is maximal, the combinations A′P(2...) of the secondary FCC
are independent. We can choose them as new momenta P ′(2) which are now second-stage
FCC. For this, we perform a canonical transformation (Q(2...),P(2...)) → (Q′(2...),P ′(2...)) with
the generating function

W = Q′(2)A′P(2...) + Q′(3...)A′′P(2...). (A.3)

Here, the rectangular matrix A′′ is chosen such that the quadratic matrix � = ‖A′A′′‖ is
invertible, det � �= 0. Therefore, the new variables are

P ′(2...) = (P ′(2),P ′(3...)), Q′(2...) = (Q′(2),Q′(3...)),

P ′(2) = A′P(2...), P ′(3...) = (A′′P(2...)), Q′(2...) = Q(2...)�−1.

In terms of the new variables the Hamiltonian (A.2) is

H(1) = Hph + Q̄(1)P ′(2) + (Q′(2...)B ′ + ωC ′)P ′(2...) + P ′(2...)D′P ′(2...)

+P ′(2...)E′U(2...) + U(2...)FU(2...) + λ1P(1|1) + λ̄P̄(1) + λUU(1). (A.4)

The matrices B ′, C ′,D′ and E′ differ from B,C,D and E because of the change of the
variables and, at the same time, they absorb the time derivative of the generating function
(A.1). We note that the latter derivative does not modify the term Q′(1)P ′(2).

Explicitly separating the terms proportional to P ′(2) in equations (A.4) and omitting all
the primes, we obtain

H(1) = Hph + (Q̄(1) + �qSq + �pSp)P(2) + (Q(2...)B + ωC)P(3...) + P(3...)DP(3...)

+P(3...)EU(2...) + U(2...)FU(2...) + λ1P(1|1) + λ̄P̄(1) + λUU(1), (A.5)

where � = (�q,�p) is the set of all the phase-space variables except Q(1|1), Q̄(1) and
P(1|1), P̄(1), while Sq, Sp, B,C,D,E, and F are some matrices.

We now perform a canonical transformation (we do not transform the variables
Q(1|1),P(1|1)) with the generating function W ,

W = P̄ ′(1)(Q̄(1) + �qSq + �′
pSp) + �′

p�q,

which yields

P̄ ′(1) = P̄(1), Q̄′(1) = Q̄(1) + �qSq + �pSp + O(P̄(1)), �′ = � + O(P̄(1)).

In terms of the new variables, the Hamiltonian (A.5) takes the form

H(1) = Hph + Q̄(1)P(2) + (Q(2...)B + ωC)P(3...) + P(3...)DP(3...)

+P(3...)EU(2...) + U(2...)FU(2...) + λ1P(1|1) + λ̄P̄(1) + λUU(1), (A.6)
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where B,C,D,E and F are some matrices, the primes are omitted and redefined functions
λP absorb time derivative of the generating function.

At this stage of the procedure, we consider the term Q(2)BP(3...) in the Hamiltonian (A.6).
Let the variables Q̄(1), P̄(1); Q(2),P(2) be numbered by Greek subscripts, and the variables
Q(3...),P(3...) be labelled by Latin subscripts (in the general case the number of indices differs
from that from the first stage of the procedure). We assume that the defect of the rectangular
matrix Bνk is equal to b (obviously [Q(2)] − b � [Q(3...)]). Then, there are b nontrivial null
vectors υ(α̃), α̃ = 1, . . . , b of the matrix B such that υν

(α̃)B
νk = 0. We construct a quadratic

matrix

V να = ∥∥υν
(α̃)υ

ν
(ᾱ)

∥∥, α = (α̃, ᾱ), [ᾱ] � [k],

where the vectors υ(ᾱ) provide the nonsingularity of the complete matrix V . Such vectors
always exist. Then we perform a canonical transformation

Q̄(1), P̄(1);Q(2),P(2) → Q̄′(1), P̄ ′(1);Q′(2),P ′(2), Q′(2) = (Q′(2)
α̃ = Q

(2|2)
α̃ ,Q

′(2)
ᾱ = Q̃

(2)
ᾱ

)
,

with the generating function

W = Q̄′(1)V P̄(1) + Q′(2)VP(2).

In terms of the new variables, the Hamiltonian (A.6) has the form

H(1) = Hph + (Q̄(1) + Q(2)	)P(2) + Q̃(2)BP(3...) + (Q(3...)K + ωC)P(3...) + P(3...)DP(3...)

+P(3...)EU(2...) + U(2...)FU(2...) + λ1P(1|1) + λ̄P̄(1) + λUU(1), (A.7)

where 	 = ∂V
∂t

V −1, B,K,C,D,E and F are some matrices (we omit all the primes and
redefine λ). In particular,

rank B = max = [Q̃(2)] � [P(3...)].

We now perform a canonical transformation Q̄(1), P̄(1),Q(2),P(2) → Q̄′(1), P̄ ′(1),

Q′(2),P ′(2) with the generating function

W = (Q̄(1) + Q(2)	)P̄ ′(1) + Q(2)P ′(2),

which yields

P̄ ′(1) = P̃(1), Q̄′(1) = Q̄(1) + Q(2)	, P ′(2) = P(2) − 	P̄(1), Q′(2) = Q(2).

In terms of the new variables, the Hamiltonian (A.7) takes the form

H(1) = Hph + Q(1|2)P(2|2) + Q̃(1)P̃(2) + Q̃(2)BP(3...)

+ (Q(3...)K + ωC)P(3...) + P(3...)DP(3...) + P(3...)EU(2...)

+ U(2...)FU(2...) + λ1P(1|1) + λ2P(1|2) + λ̃P̃(1) + λUU(1).

The primes are omitted and λP are redefined. The time derivative of the generating function
is absorbed by the term λ̃P̃(1).

We note that the variables Q(2|2) do not enter the Hamiltonian and therefore, the
consistency conditions for the constraints P(2|2) do not yield any new constraints. In addition,
we remark that at this stage of the procedure, the primary FCC are P(1|1),P(1|2) and P̃(1).

We consider the consistency conditions for the second-stage FCC P(2),

{P̃(2), H (1)} = −BP(3...) = 0.

Because the rank of the matrix B is maximum, the combinations BP(3...) are independent. We
can choose them as new momenta P ′(3) which are now third-stage FCC. For this, we perform
a canonical transformation (Q(3...),P(3...)) → (Q′(3...),P ′(3...)) with the generating function

W = Q′(3)BP(3...) + Q′(4...)B ′P(3...), Q
(3...)
k = (Q(3)

α′ ,Q
(4...)
k′
)
.
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The rectangular matrix B ′ is here chosen such that the quadratic matrix � = ‖BB ′‖ is
invertible, det � �= 0. We thus obtain

P ′(3...) = �P = (P ′(3)
α′ ,P ′(4...)

k′
)
, P ′(3)

α′ = Bα′kP(3...)
k ,

Q′(3...) = Q(3...)�−1 = (Q′(3)
α′ ,Q

′(4...)
k′
)
.

In terms of the new variables, the Hamiltonian (A.7) has the form

H(1) = Hph + Q(1|2)P(2|2) + Q̃(1)P̃(2) + Q̃(2)P(3) + (Q(3...)K + ωC)P(3...) + P(3...)DP(3...)

+P(3...)EU(2...) + U(2...)FU(2...) + λ1P(1|1) + λ2P(1|2) + λ̃P̃(1) + λUU(1),

where K,C,D,E, and F are some matrices and primes are omitted.
We separate terms proportional to P(3) in this expression and obtain

H(1) = Hph + Q(1|2)P(2|2) + Q̃(1)P̃(2) + P(3)(Q̃(2) + Sq�q + Sp�p)

+ (Q(3...)K + ωC)P(4...) + P(4...)DP(4...) + P(4...)EU(2...)

+ U(2...)FU(2...) + λ1P(1|1) + λ2P(1|2) + λ̃P̃(1) + λUU(1), (A.8)

where Sq, Sp,K,C,D,E, and F are some matrices, and � = (�q,�p) is the set of all the
phase-space variables, except for Q(1|1),P(1|1),Q(1|2),P(1|2), Q̃(1), P̃(1),Q(2|2),P(2|2), Q̃(2)

and P̃(2).
We now perform a canonical transformation (we do not transform the variables

Q(1|1),P(1|1); Q(1|2),P(1|2); Q̃(1), P̃(1),Q(2|2),P(2|2)) with the generating function

W = P̃ ′(2)(Q̃(2) + Sq�q + Sp�′
p) + �′

p�q,

which yields

P̃ ′(2) = P̃(2), Q̃′(2) = Q̃(2) + Sq�q + Sp�p + O(P̃(2)), �′ = � + O(P̃(2)).

In terms of the new variables, the Hamiltonian (A.8) takes the form

H(1) = Hph + Q(1|2)P(2|2) + P̃(2)(Q̃(1) + Rq�q + Rp�p) + Q̃(2)P(3)

+ (Q(3...)K + ωC)P(4...) + P(4...)DP(4...) + P(4...)EU(2...)

+ U(2...)FU(2...) + λ1P(1|1) + λ2P(1|2) + λ̃P̃(1) + λUU(1), (A.9)

where � = (Q̃(2), P̃(2), �) = (�q,�p) and R,K,C,D,E and F are some matrices, all the
primes are omitted.

We perform a canonical transformation with the generating function

W = P̃ ′(1)(Q̃(1) + Rq�q + Rp�′
p) + �′

p�q,

and obtain

P̃ ′(1) = P̃(1), Q̃′(1) = Q̃(1) + Rq�q + Rp�p + O(P̃(1)), �′ = � + O(P̃(1)).

In terms of the new variables, the Hamiltonian (A.9) takes the form

H(1) = Hph + Q(1|2)P(2|2) + Q̃(1)P̃(2) + Q̃(2)P(3)

+ (Q(3...)K + ωC)P(4...) + P(4...)DP(4...) + P(4...)EU(2...)

+ U(2...)FU(2...) + λ1P(1|1) + λ2P(1|2) + λ̃P̃(1) + λUU(1), (A.10)

where K,C,D,E and F are some matrices, all the primes are omitted and λP are redefined.
Further transformations of the Hamiltonian (A.10) can be done using the same kind

of canonical transformations as those used before. At the end of the procedure, we obtain
form (3) for the non-physical part of the total Hamiltonian.

We emphasize some important facts related to the canonical transformation that was
performed to reduce the total Hamiltonian to the form (3).
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First, we note that the final variables ω, Q, �, where � = (P, U) (superspecial phase-
space variables) still remain special phase-space canonical variables ϑ and possess all the
corresponding properties of such variables. Let the final superspecial phase-space canonical
variables be labelled by primes while the initial special phase-space variables are without
primes. We can see that

P ′ = TP, P(1)′ = T (1)P(1), U ′ = U + O(P), U(1)′ = U(1),

such that P ′ are FCC, P(1)′ are primary FCC, U ′ are SCC, and U(1)′ are primary SCC. The
physical variables do not change on the constraint surface, ω → ω′ = ω + O(P). We
emphasize that the superspecial variables P(i|a) coincide with the FCC χ(i|a) in the orthogonal
constraint basis introduced in [10]. In the general nonquadratic theory, the relation is

χ(i|a) = P(i|a) + O(ϑ�). (A.11)

We can also see that in the superspecial phase-space variables, the non-physical part of
the Hamiltonian action can be written as

Snon-ph =
∫ P�̂Q +

ℵχ∑
i=1

P(i|i)Q̇(i|i) + UB̂U


 dt, (A.12)

where �̂ and B̂ are first-order differential matrix operators and

Q = (λa
P ,Q(i|a), i = 1, . . . , a − 1, a = 1, . . . ,ℵχ

)
, U = (λU ,U).

It is important that [Q] = [P] because [λP ] = [P(1)].
We can see that there are local operators �̂−1 and B̂−1 such that �̂�̂−1 = �̂−1�̂ = 1,

B̂B̂−1 = B̂−1B̂ = 1. This assertion can be derived from the fact that by the construction of the
special phase-space variables, the Hamiltonian equations of motion have the unique solution
P = 0 and U = 0. Therefore, the equations

δSH

δQ
= 0 �⇒ �̂T P = 0,

δSH

δU
= 0 �⇒ B̂U = 0 (A.13)

must have only the solution P = 0 and U = 0. We represent �̂ as

�̂ = �

(
d

dt

)
= a

d

dt
+ b,

where a and b are some constant matrices, and consider the solutions of the form P(t) =
e−EtP(0), where E is a complex number. We obtain that �T (E)P(0) = 0. The existence of
the unique solution P(0) = 0 implies

∀E : det �(E) �= 0. (A.14)

On the other hand, det �(E) is a polynomial of E. Because of (A.14), such a polynomial has
no roots. That means that det �(E) = const = c. In turn, this implies that

�−1(E) = 1

c
	(E),

where 	(E) are the corresponding minors of the matrix �(E). The latter minors are finite-
order polynomials in E. Therefore, the operator

�̂−1 = 1

c
	

(
d

dt

)

is a local operator. We can similarly prove the existence of the local operator B̂−1 (for this, it
is convenient to reduce the Hamiltonian H

(1)
SCC to a canonical form, see below).
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In the same manner, we can demonstrate that there is a choice of superspecial phase-space
variables that already include the variables U and which significantly simplify the Hamiltonian
H

(1)
SCC. Namely, for such a choice the variables U have the structure U = (V ; u), where both

V and u are sets of pairs of conjugate coordinates and momenta. The variables from these sets
are divided into groups according to the stages of the Dirac procedure and organized in chains
(labelled by the index a). The variables V consist of coordinates � and conjugate momenta �,
namely,

V = (�(i|2a)
µa

,�(i|2a+1)
νa,s

;�(i|2a)
µa

,�(i|2a+1)
νa,s

)
, 1 � a � ℵϕ/2,

i = 1, . . . , a, s = 1, 2, u = (u(1)
ζ,s , u

(2a+1)
νa,s

)
.

The variables u(1) are primary constraints (first-stage constraints); the variables u(2a+1) are
2a + 1-stage constraints; the variables �(i|2a) and �(i|2a+1) are i-stage constraints; the variables
�(i|2a) are 2a − (i − 1)-stage constraints; the variables �(i|2a+1) are 2a + 1 − (i − 1)-stage
constraints.

The variables are divided into even and odd chains. Variables in even chains (labelled by
2a) are labelled by the index µa , variables in odd chains (labelled by 1, 2a + 1) are labelled
by the index ζ , νa and by the index. The number of indices µa and ζ , νa can be equal to zero.

In terms of the variables V, u the Hamiltonian H
(1)
SCC becomes

H(1)
scc = hodd + heven + λ(1)u(1),

heven =
∑
a=1

(
a−1∑
i=1

�(i|2a)�(i+1|2a) + σ2a(�
(i|2a))2 + λ(2a)�(1|2a)

)
,

hodd =
∑
a=1

(
a−1∑
i=1

�(i|2a+1)�(i+1|2a+1) + σ2a+1�
(a|2a+1)u(2a+1) + λ(2a+1)�(1|2a+1)

)
,

where σ �= 0 are some numbers. There is a summation over the indices µ, ν and ζ , in
particular σ2a(�

(i|2a))2 =∑µa
σ2a,µa

(
�(i|2a)

µa

)2
.

In the refined superspecial phase-space variables, the consistency conditions that start
with the primary SCC require that all the corresponding Lagrange multipliers λ(1), λ(2a) and
λ(2a+1) be zero. See the following scheme of constraint chains:

u(1)
s → λ(1)

s

�(1|2) → �(1|2) → λ(2)

�
(1|3)
s → �

(2|3)
s → u(3)

s → �
(2|3)
s → �

(1|3)
s → λ(3)

s

�(1|4) → �(2|4) → �(2|4) → �(1|4) → λ(4)

...

�(1|2a) → · · · → �(a|2a) → �(a|2a) → · · · → �(1|2a) → λ(2a)

�
(1|2a+1)
s → · · · → �

(a|2a+1)
s → u(2a+1)

s → �
(a|2a+1)
s → · · · → �

(1|2a+1)
s → λ(2a+1)

s .

...
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